Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 14(1): 3026, 2023 05 25.
Article in English | MEDLINE | ID: covidwho-20242082

ABSTRACT

Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets. Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2. Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing a role for an accessory protein in this context.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Humans , Mice , SARS-CoV-2/genetics , Animals, Newborn , Ferrets , Disease Models, Animal , Mesocricetus
2.
Front Immunol ; 13: 1011185, 2022.
Article in English | MEDLINE | ID: covidwho-2154729

ABSTRACT

SARS-CoV-2 remains a global health crisis even with effective vaccines and the availability of FDA approved therapies. Efforts to understand the complex disease pathology and develop effective strategies to limit mortality and morbidity are needed. Recent studies reveal circulating Galectin-9 (gal-9), a soluble beta-galactoside binding lectin with immunoregulatory properties, are elevated in SARS-CoV-2 infected individuals with moderate to severe disease. Moreover, in silico studies demonstrate gal-9 can potentially competitively bind the ACE2 receptor on susceptible host cells. Here, we determined whether early introduction of exogenous gal-9 following SARS-CoV-2 infection in humanized ACE2 transgenic mice (K18-hACE2) may reduce disease severity. Mice were infected and treated with a single dose of a human recombinant form of gal-9 (rh-gal-9) and monitored for morbidity. Subgroups of mice were humanely euthanized at 2- and 5- days post infection (dpi) for viral levels by plaque assay, immune changes measures by flow cytometry, and soluble mediators by protein analysis from lung tissue and bronchoalveolar Lavage fluid (BALF). Mice treated with rh-gal-9 during acute infection had improved survival compared to PBS treated controls. At 5 dpi, rh-gal-9 treated mice had enhanced viral clearance in the BALF, but not in the lung parenchyma. Increased T and dendritic cells and decreased neutrophil frequencies in the lung at 5 dpi were observed, whereas BALF had elevated levels of type-I interferons and proinflammatory cytokines. These results suggest a role for rh-gal-9 in limiting acute COVID-19. Further studies are required to determine the optimal design of gal-9 treatment to effectively ameliorate COVID-19 disease.


Subject(s)
COVID-19 , Mice , Humans , Animals , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Mice, Transgenic , Galectins
3.
Nat Microbiol ; 6(10): 1245-1258, 2021 10.
Article in English | MEDLINE | ID: covidwho-1380902

ABSTRACT

Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.


Subject(s)
Bronchoalveolar Lavage Fluid/microbiology , COVID-19/therapy , Respiration, Artificial , SARS-CoV-2/pathogenicity , Adaptive Immunity , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Load , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/microbiology , COVID-19/mortality , Critical Illness , Female , Hospitalization , Humans , Immunity, Innate , Male , Microbiota , Middle Aged , Odds Ratio , Prognosis , Prospective Studies , Respiratory System/immunology , Respiratory System/microbiology , Respiratory System/virology , SARS-CoV-2/immunology , Viral Load
4.
Cell Host Microbe ; 29(7): 1033-1035, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1309193

ABSTRACT

Mounting a robust immune response against SARS-CoV-2 requires neutralization as well as effector T cell functions. In this issue of Cell Host Microbe, Tauzin et al. characterize the humoral and T cell responses after a single dose of BNT162b2 mRNA vaccine in individuals with or without previous exposure to SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Vaccines , Humans , RNA, Messenger/genetics , Vaccination
5.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1246001

ABSTRACT

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasm Proteins/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/genetics , Cell Line , Cytokines , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators/metabolism , Lectins, C-Type/chemistry , Membrane Proteins/chemistry , Models, Molecular , Neoplasm Proteins/chemistry , Protein Binding , Protein Conformation , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL